Homogeneous Equation:

Definition: Homogeneous Function

If a function f has the property $f(\lambda x, \lambda y)=\lambda^{\alpha} f(x, y)$, then f is called a homogeneous function of degree α.

Homogeneous Equation:

Definition: Homogeneous Function

If a function f has the property $f(\lambda x, \lambda y)=\lambda^{\alpha} f(x, y)$, then f is called a homogeneous function of degree α.

Example

$f(x, y)=x^{3}+y^{3}$ is homogeneous of degree 3 , $f(\lambda x, \lambda y)=(\lambda x)^{3}+(\lambda y)^{3}=\lambda^{3} f(x, y)$

Homogencous Equation:

Definition: Homogeneous Equation

A first-order DE:

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be homogeneous, if both M and N are homogeneous
of the same degree, that is, if

$$
M(\lambda x, \lambda y)=\lambda^{\alpha} M(x, y), N(\lambda x, \lambda y)=\lambda^{\alpha} N(x, y)
$$

Homogeneous Equation:

Definition: Homogeneous Equation

A first-order DE:

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be homogeneous, if both M and N are homogeneous of the same degree, that is, if

$$
M(\lambda x, \lambda y)=\lambda^{\alpha} M(x, y), N(\lambda x, \lambda y)=\lambda^{\alpha} N(x, y)
$$

Examples

$$
\begin{array}{ll}
\left(x^{2}-3 x y\right) d x+\left(7 x^{2}-y^{2}\right) d y=0 & \text { homogeneous DE of order } 2 \\
(x+5 y) d x-\left(x^{2}+4 y^{2}\right) d y=0 & \text { not a homogeneous DE }
\end{array}
$$

Facts about Homogeneous Equation:

Fact 1

If M and N are homogeneous of the same degree, then $\frac{M}{N}$ is
homogeneous of degree 0 . homogeneous of degree 0 .

Fact 1

If M and N are homogeneous of the same degree, then $\frac{M}{N}$ is homogeneous of degree 0 .

Proof

$\frac{M(\lambda x, \lambda y)}{N(\lambda x, \lambda y)}=\frac{\lambda^{a} M(x, y)}{\lambda^{a} N(x, y)}=\frac{M(x, y)}{N(x, y)}=\lambda^{0} \frac{M(x, y)}{N(x, y)}$

Facts about homogeneous equation

Fact 2

If f is homogeneous of degree 0 , then f can be expressed as a function of $\frac{y}{x}$.

$$
f(x, y)=\phi(v), \quad v=\frac{y}{x}
$$

Example 1

Solve the DE $\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$.

Example 1

Solve the $\mathrm{DE}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$.

We have $M=x^{2}+y^{2}, N=x^{2}-x y$ are homogeneous of degree 2 .
Let $y=u x, d y=u d x+x d u$, then

Example 1

Solve the DE $\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$.

We have $M=x^{2}+y^{2}, N=x^{2}-x y$ are homogeneous of degree 2 .
Let $y=u x, d y=u d x+x d u$, then

$$
\left(x^{2}+u^{2} x^{2}\right) d x+\left(x^{2}-u x^{2}\right)(u d x+x d u)=0
$$

$$
\frac{1-u}{1+u} d u+\frac{d x}{x}=0
$$

$$
\left[-1+\frac{2}{1+u}\right] d u+\frac{d x}{x}=0
$$

Example 1

Then

$$
\begin{aligned}
& -u+2 \ln |1+u|+\ln |x|=\ln |c| \\
& -\frac{y}{x}+2 \ln \left|1+\frac{y}{x}\right|+\ln |x|=\ln |c|
\end{aligned}
$$

Example 1

Then

$$
\begin{aligned}
& -u+2 \ln |1+u|+\ln |x|=\ln |c| \\
& -\frac{y}{x}+2 \ln \left|+\frac{y}{x}\right|+\ln |x|=\ln |c|
\end{aligned}
$$

Simplify to get

$$
\ln \left|\frac{(x+y)^{2}}{c x}\right|=\frac{y}{x} \quad \text { or } \quad(x+y)^{2}=c x e^{y / x}
$$

* Note: We may also try $\mathrm{x}=\mathrm{vy}$.

